

PENETRATION TEST REPORT
https://83.212.174.87/login.php

Executive Summary

I was contracted to conduct a penetration test in order to determine its exposure
to a targeted attack. All activities were conducted in a manner that simulated a
malicious actor engaged in a targeted attack against this login page with the
goals of:

1. Identifying if a remote attacker could 83.212.174.87 defenses.
2. Determine the impact of a security breach on:

a) Confidentiality of the its private data
b) Internal infrastructure and availability of 83.212.174.87 information
system

Efforts were placed on the identification and exploitation of security weakness
that could allow a remote attacker to gain unauthorized access to the database.
The attacks were conducted with the level of access that a general internet user
would have.

All tests and actions being conducted under controlled conditions.

SCOPE

Activity performed a Web Application Security Assessment of web portal
(83.212.174.87)

The application is internet facing and requires password identity for secure
access.

The landing page to the application under review was at the following address:

URL : http://83.212.174.87/login.php

Client (milkatos7) defined the following application URL and web server host
as in scope:

URL : http://83.212.174.87

My testing included both unauthenticated as well as authenticated testing.

Attack Narrative

Remote System Discovery

This section provides details on the open ports and remote system discovery

This table shows the open port on the system, not each open port is a security
threat, but open ports on the system are invitations to the attackers. In general,
the number of open ports should be kept to a minimum and only the mission-
critical ports should be open.

PORT NUMBER Services
22(tcp) ssh
23(tcp) telnet
25(tcp) smtp
80 (tcp) HTTP
2222 (tcp) ssh
2323/tcp 3d - nfsd

Screenshots:

Remote operating system : Linux Kernel 3.2 on Debian 7.0 (wheezy)

Banner Grabbing & Version Detection

This table provides general details of Banner and Version Detection.

Target Banner - 80 Apache HTTP Server 2.4.38 (Port 80)

Screenshot:

Load Balancer and Firewall Detection:

I found that the IP : 83.212.174.87 has no Load balancer and no Firewall in
place.

But the landing URL has no protection whatsoever. Check the Below
screenshot :

DNS Penetration Test

For the purposes of this assessment, milkatos7 provided minimal information
of the organizational domain name: https://83.212.174.87/login.php

The name of this machine either does not resolve or resolves to a different IP
address.

IP Analysis

I have found the IP address of the login page named is 83.212.174.87

IP = 383.212.174.87.
IP registrar is Greek Research and Technology Network (GRNET) S.A.

Web App Built with Following technologies:

See the table below:

Sr. No Technology Used

1 Apache 2.4

2 Iphone/Mobile Compatible

3 HTML5

4 php

File Guessing Attack

Risk: High

It is sometimes possible to find interesting contents on a web site simply by
“snooping” around.

Sometimes there are backup of files or older versions of live code, or perhaps
vulnerable sample application pages on the web site. When accessing sensitive
patient data, application relies on dynamic tokens that change with each request.

Conclusion: I attempted various URL brute-forcing for common file names and found

no file which has to be hidden.

Password Brute Force

Risk: High

A brute force attack is a trial-and-error method used to obtain information
such as a user password or personal identification number (PIN). In a brute
force attack, automated software is used to generate a large number of
consecutive guesses as to the value of the desired data.

I performed a rigorous brute force attack on the login page with a wordlist of
around 80,000 most commonly used passwords around the world and found no
success. This simply means that the password set for the portal is either strong
or not common.

Conclusion: I found no success with the brute force attack.

Directory Browsing

Risk: Medium

Directory Browsing is an information gathering attack which leverages an
administrative misconfiguration in a web server which allows listing of
directory contents.

This is a very bad practice as it provides a would-be attack far too much
information. Most web servers are configured out-of-the box with directory
browsing turned on. As a result, this vulnerability is still often found in the wild.

URL Injection

Risk: High

URL injections take place when an individual attempts to manipulate your
online database through the commands sent by the URL.

Often, this form of hacking involves the creation of new pages throughout your
website by hackers- often dangerous bits of code or spam links that can make
your site a security risk to visitors.

Often, new pages that are created are packed full of code that re-directs your
visitors to dangerous locations, or allow your webserver to participate in attacks
that you may not even be aware of.

Conclusion: Directory browsing is disabled from the server. Hence it is safe.

Conclusion: Being a website with little or no parameters, I didn’t find a vulnerable URL to inject any malicious code.

Cross-Side Scripting

Risk: Medium

Cross-Site Scripting (XSS) attacks are a type of injection, in which malicious
scripts are injected into otherwise benign and trusted websites. XSS attacks
occur when an attacker uses a web application to send malicious code, generally
in the form of a browser side script, to a different end user.

NOTE- The X-XSS-Protection header is not defined. This header can hint
to the user agent to protect against some forms of XSS. This is a serious
security issue.

Other vulnerabilities:

1) SSH Server CBC Mode Ciphers Enabled

Severity : Low

Description

The SSH server is configured to support Cipher Block Chaining
(CBC) encryption. This may allow an attacker to recover the
plaintext message from the ciphertext.

Solution

Contact the vendor or consult product documentation to disable
CBC mode cipher encryption, and enable CTR or GCM cipher
mode encryption.

Conclusion: Because of no inputs methods in the web app, the web app is safe from XSS attack.

2) Back-end code disclosure

Severity : High

Description

Source code disclosure issues occur when the code of the backend
environment of a web application is exposed to the public. Source
code disclosure enables attackers to understand how the application
behaves by simply reading the code and checking for logical flaws, or
hardcoded username/password pairs, or API secret keys. The severity
here depends on how much of the code is exposed, and how critical
the leaked lines of code are for the security of the web application. In
short, source code disclosure turns a black box testing process into
more of a white box testing approach since attackers get access to the
code.

Affected URL : http://83.212.174.87/util.sh

When a wrong password is entered, ideally a login page must only show
alerts like ‘Wrong Password’ or ‘Wrong input, Try again’ etc. But here in
this case, the application shows the entire database variable name and
syntax which is an attack surface for any hacker or attacker.

3) Default Password Found

Severity: High

I found that the open port in the server Port: 25 (ssh) uses
default password (admin).
This vulnerability can be lethal and any attacker can get root
priviliges on the server and do whatever he wants to.

Below is the screenshot:

I found there were configuration files inside the system. I could
have edited it to make it unusable for the owner. This is a
critical flaw.

3) Web Application Potentially Vulnerable to Clickjacking

Severity : Medium

Description
The remote web server does not set an X-Frame-Options response
header or a Content-Security-Policy 'frame-ancestors' response header
in all content responses. This could potentially expose the site to a

clickjacking or UI redress attack, in which an attacker can trick a user
into clicking an area of the vulnerable page that is different than what
the user perceives the page to be. This can result in a user performing
fraudulent or malicious transactions.

X-Frame-Options has been proposed by Microsoft as a way to
mitigate clickjacking attacks and is currently supported by all major
browser vendors.

Solution
Return the X-Frame-Options or Content-Security-Policy (with the
'frame-ancestors' directive) HTTP header with the page's response.
This prevents the page's content from being rendered by another site
when using the frame or iframe HTML tags.

The following pages do not use a clickjacking mitigation response
header and contain a clickable event :

 - http://83.212.174.87/

FUNCTIONALITY and USABILTY TEST:

Performance/ Load Test:

• Page Size :36.9kb
• Fully Load Time: 688ms

The website took around 36.9 milli seconds to load with 5
requests.

Summary:

Serious flaw found in the system. It needs to be addressed as
soon as possible.

