

VULNERABILITY
SCANNING REPORT

Attention:

This document contains information that is EXTREMELY CONFIDENTIAL and PRIVILEGED. This information is
intended for the sole and private use. By accepting this document, you agree to keep the contents in
confidence and not copy, disclose, or distribute this outside your organization.

 Vulnerability Scanning Report

1
HIGHLY CONFIDENTIAL

Contents
1 Introduction ... 2

1.1. Overview .. 2

1.2. Scope .. 2

2 Summary of Finding ... 2

3 Detailed Findings .. 3

 Vulnerability Scanning Report

2
HIGHLY CONFIDENTIAL

1 Introduction
1.1. Overview
This report documents the findings for the Vulnerabilities of http://83.212.174.87. The purpose of
engagement is to discover weak links, security updates and provide Solution to against vulnerabilities
entitled discovered.
The core objective of this engagement was to assess client’s Application against potential known
vulnerabilities discovered during the test.

1.2. Scope

The Vulnerability Assessment perform on the following host

• http://83.212.174.87

2 Summary of Finding
The graph below shows a summary of the number of vulnerabilities found for each impact level for the
Vulnerabilities Security Assessment. A significant number of high impact vulnerabilities were found that
should be addressed as a priority. During the vulnerability security assessment, it was identified that the
total of 9 risks were identified, 1 were high, 1 were medium and 7 were Low.

Total Risks High Medium Low

9 1 1 7

Sr. No Vulnerabilities Count Severity

1 Cross Site Scripting (Reflected) 1 High

2 X-Frame-Options Header Not Set 1 Medium

3 Web Browser XSS Protection Not Enabled 1 Low

4 X-Content-Type-Options Header Missing 1 Low

5 SSH Server CBC Mode Ciphers Enabled 1 Low

6 SSH Weak MAC Algorithms Enabled 1 Low

7 Version Disclosure (Apache) 1 Low

8 [Possible] Cross-site Request Forgery in Login Form Detected 1 Low

9 Autocomplete Enabled 1 Low

 Vulnerability Scanning Report

3
HIGHLY CONFIDENTIAL

3 Detailed Findings

Vulnerability Impact High

Vulnerability Cross Site Scripting (Reflected)

Affected IP 83.212.174.87

Description

Cross-site Scripting (XSS) is an attack technique that involves echoing attacker-
supplied code into a user's browser instance. A browser instance can be a standard
web browser client, or a browser object embedded in a software product such as the
browser within WinAmp, an RSS reader, or an email client. The code itself is usually
written in HTML/JavaScript, but may also extend to VBScript, ActiveX, Java, Flash, or
any other browser-supported technology.

When an attacker gets a user's browser to execute his/her code, the code will run
within the security context (or zone) of the hosting web site. With this level of
privilege, the code has the ability to read, modify and transmit any sensitive data
accessible by the browser. A Cross-site Scripted user could have his/her account
hijacked (cookie theft), their browser redirected to another location, or possibly
shown fraudulent content delivered by the web site they are visiting. Cross-site
Scripting attacks essentially compromise the trust relationship between a user and the
web site. Applications utilizing browser object instances which load content from the
file system may execute code under the local machine zone allowing for system
compromise.

There are three types of Cross-site Scripting attacks: non-persistent, persistent and
DOM-based.

Non-persistent attacks and DOM-based attacks require a user to either visit a specially
crafted link laced with malicious code, or visit a malicious web page containing a web
form, which when posted to the vulnerable site, will mount the attack. Using a
malicious form will oftentimes take place when the vulnerable resource only accepts
HTTP POST requests. In such a case, the form can be submitted automatically, without
the victim's knowledge (e.g. by using JavaScript). Upon clicking on the malicious link or
submitting the malicious form, the XSS payload will get echoed back and will get
interpreted by the user's browser and execute. Another technique to send almost
arbitrary requests (GET and POST) is by using an embedded client, such as Adobe Flash.

Persistent attacks occur when the malicious code is submitted to a web site where it's
stored for a period of time. Examples of an attacker's favorite targets often include
message board posts, web mail messages, and web chat software. The unsuspecting
user is not required to interact with any additional site/link (e.g. an attacker site or a
malicious link sent via email), just simply view the web page containing the code.

 Vulnerability Scanning Report

4
HIGHLY CONFIDENTIAL

Solution

Phase: Architecture and Design

Use a vetted library or framework that does not allow this weakness to occur or
provides constructs that make this weakness easier to avoid.

Examples of libraries and frameworks that make it easier to generate properly
encoded output include Microsoft's Anti-XSS library, the OWASP ESAPI Encoding
module, and Apache Wicket.

Phases: Implementation; Architecture and Design

Understand the context in which your data will be used and the encoding that will be
expected. This is especially important when transmitting data between different
components, or when generating outputs that can contain multiple encodings at the
same time, such as web pages or multi-part mail messages. Study all expected
communication protocols and data representations to determine the required
encoding strategies.

For any data that will be output to another web page, especially any data that was
received from external inputs, use the appropriate encoding on all non-alphanumeric
characters.

Consult the XSS Prevention Cheat Sheet for more details on the types of encoding and
escaping that are needed.

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks
are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the
client-side checks by modifying values after the checks have been performed, or by
changing the client to remove the client-side checks entirely. Then, these modified
values would be submitted to the server.

If available, use structured mechanisms that automatically enforce the separation
between data and code. These mechanisms may be able to provide the relevant
quoting, encoding, and validation automatically, instead of relying on the developer
to provide this capability at every point where output is generated.

Phase: Implementation

For every web page that is generated, use and specify a character encoding such as
ISO-8859-1 or UTF-8. When an encoding is not specified, the web browser may choose
a different encoding by guessing which encoding is actually being used by the web
page. This can cause the web browser to treat certain sequences as special, opening
up the client to subtle XSS attacks. See CWE-116 for more mitigations related to
encoding/escaping.

To help mitigate XSS attacks against the user's session cookie, set the session cookie
to be HttpOnly. In browsers that support the HttpOnly feature (such as more recent
versions of Internet Explorer and Firefox), this attribute can prevent the user's session

 Vulnerability Scanning Report

5
HIGHLY CONFIDENTIAL

cookie from being accessible to malicious client-side scripts that use document.cookie.
This is not a complete solution, since HttpOnly is not supported by all browsers. More
importantly, XMLHTTPRequest and other powerful browser technologies provide read
access to HTTP headers, including the Set-Cookie header in which the HttpOnly flag is
set.

Assume all input is malicious. Use an "accept known good" input validation strategy,
i.e., use a whitelist of acceptable inputs that strictly conform to specifications. Reject
any input that does not strictly conform to specifications, or transform it into
something that does. Do not rely exclusively on looking for malicious or malformed
inputs (i.e., do not rely on a blacklist). However, blacklists can be useful for detecting
potential attacks or determining which inputs are so malformed that they should be
rejected outright.

When performing input validation, consider all potentially relevant properties,
including length, type of input, the full range of acceptable values, missing or extra
inputs, syntax, consistency across related fields, and conformance to business rules.
As an example of business rule logic, "boat" may be syntactically valid because it only
contains alphanumeric characters, but it is not valid if you are expecting colors such as
"red" or "blue."

Ensure that you perform input validation at well-defined interfaces within the
application. This will help protect the application even if a component is reused or
moved elsewhere.

Vulnerability Impact Medium

Vulnerability X-Frame-Options Header Not Set

Affected IP 83.212.174.87

Description
X-Frame-Options header is not included in the HTTP response to protect against
'ClickJacking' attacks.

Solution

Most modern Web browsers support the X-Frame-Options HTTP header. Ensure it's
set on all web pages returned by your site (if you expect the page to be framed only
by pages on your server (e.g. it's part of a FRAMESET) then you'll want to use
SAMEORIGIN, otherwise if you never expect the page to be framed, you should use
DENY. ALLOW-FROM allows specific websites to frame the web page in supported web
browsers).

Vulnerability Impact Low

Vulnerability Web Browser XSS Protection Not Enabled

Affected IP 83.212.174.87

 Vulnerability Scanning Report

6
HIGHLY CONFIDENTIAL

Description
Web Browser XSS Protection is not enabled, or is disabled by the configuration of the
'X-XSS-Protection' HTTP response header on the web server

Solution
Ensure that the web browser's XSS filter is enabled, by setting the X-XSS-Protection
HTTP response header to '1'.

Vulnerability Impact Low

Vulnerability X-Content-Type-Options Header Missing

Affected IP 83.212.174.87

Description

The Anti-MIME-Sniffing header X-Content-Type-Options was not set to 'nosniff'. This
allows older versions of Internet Explorer and Chrome to perform MIME-sniffing on
the response body, potentially causing the response body to be interpreted and
displayed as a content type other than the declared content type. Current (early 2014)
and legacy versions of Firefox will use the declared content type (if one is set), rather
than performing MIME-sniffing.

Solution

Ensure that the application/web server sets the Content-Type header appropriately,
and that it sets the X-Content-Type-Options header to 'nosniff' for all web pages. If
possible, ensure that the end user uses a standards-compliant and modern web
browser that does not perform MIME-sniffing at all, or that can be directed by the web
application/web server to not perform MIME-sniffing.

Vulnerability Impact Low

Vulnerability SSH Server CBC Mode Ciphers Enabled

Affected IP 83.212.174.87

Description

The SSH server is configured to support Cipher Block Chaining (CBC) encryption. This
may allow an attacker to recover the plaintext message from the ciphertext.
Note that this plugin only checks for the options of the SSH server and does not check
for vulnerable software versions.

Solution
Contact the vendor or consult product documentation to disable CBC mode cipher
encryption, and enable CTR or GCM cipher mode encryption.

Vulnerability Impact Low

Vulnerability SSH Weak MAC Algorithms Enabled

Affected IP 83.212.174.87

Description
The remote SSH server is configured to allow either MD5 or 96-bit MAC algorithms,
both of which are considered weak. Note that this plugin only checks for the options
of the SSH server, and it does not check for vulnerable software versions.

 Vulnerability Scanning Report

7
HIGHLY CONFIDENTIAL

Solution
Contact the vendor or consult product documentation to disable MD5 and 96-bit MAC
algorithms.

Vulnerability Impact Low

Vulnerability Version Disclosure (Apache)

Affected IP 83.212.174.87

Description
This information might help an attacker gain a greater understanding of the systems
in use and potentially develop further attacks targeted at the specific version of
Apache.

Solution
Configure your web server to prevent information leakage from the SERVER header of
its HTTP response.

Vulnerability Impact Low

Vulnerability [Possible] Cross-site Request Forgery in Login Form Detected

Affected IP 83.212.174.87

Description

CSRF is a very common vulnerability. It's an attack which forces a user to execute
unwanted actions on a web application in which the user is currently authenticated.
Depending on the application, an attacker can mount any of the actions that can be
done by the user such as adding a user, modifying content, deleting data. All the
functionality that’s available to the victim can be used by the attacker. Only exception
to this rule is a page that requires extra information that only the legitimate user can
know (such as user’s password).

Solution

Send additional information in each HTTP request that can be used to determine
whether the request came from an authorized source. This "validation token" should
be hard to guess for attacker who does not already have access to the user's account.
If a request is missing a validation token or the token does not match the expected
value, the server should reject the request.

If you are posting form in ajax request, custom HTTP headers can be used to prevent
CSRF because the browser prevents sites from sending custom HTTP headers to
another site but allows sites to send custom HTTP headers to themselves using
XMLHttpRequest.

For native XMLHttpRequest (XHR) object in JavaScript;

xhr = new XMLHttpRequest();

xhr.setRequestHeader('custom-header', 'value');

 Vulnerability Scanning Report

8
HIGHLY CONFIDENTIAL

For JQuery, if you want to add a custom header (or set of headers) to

a. individual request

$.ajax({

 url: 'foo/bar',

 headers: { 'x-my-custom-header': 'some value' }

});

b. every request

$.ajaxSetup({

 headers: { 'x-my-custom-header': 'some value' }

});

OR

$.ajaxSetup({

 beforeSend: function(xhr) {

 xhr.setRequestHeader('x-my-custom-header', 'some value');

 }

});

Vulnerability Impact Low

Vulnerability Autocomplete Enabled

Affected IP 83.212.174.87

Description

Autocomplete is enabled in one or more of the form fields which might contain
sensitive information like "username", "credit card" or "CVV". If user chooses to save,
data entered in these fields will be cached by the browser. An attacker who can access
the victim's browser could steal this information. This is especially important if the
application is commonly used in shared computers, such as cyber cafes or airport
terminals.

 Vulnerability Scanning Report

9
HIGHLY CONFIDENTIAL

Solution

Add the attribute autocomplete="off" to the form tag or to individual "input" fields.

Find all instances of inputs that store private data and disable autocomplete. Fields
which contain data such as "Credit Card" or "CCV" type data should not be cached. You
can allow the application to cache usernames and remember passwords; however, in
most cases this is not recommended.

Re-scan the application after addressing the identified issues to ensure all of the fixes
have been applied properly

